Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.801
Filtrar
1.
Science ; 383(6684): 721-726, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359125

RESUMO

We report the design conception, chemical synthesis, and microbiological evaluation of the bridged macrobicyclic antibiotic cresomycin (CRM), which overcomes evolutionarily diverse forms of antimicrobial resistance that render modern antibiotics ineffective. CRM exhibits in vitro and in vivo efficacy against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We show that CRM is highly preorganized for ribosomal binding by determining its density functional theory-calculated, solution-state, solid-state, and (wild-type) ribosome-bound structures, which all align identically within the macrobicyclic subunits. Lastly, we report two additional x-ray crystal structures of CRM in complex with bacterial ribosomes separately modified by the ribosomal RNA methylases, chloramphenicol-florfenicol resistance (Cfr) and erythromycin-resistance ribosomal RNA methylase (Erm), revealing concessive adjustments by the target and antibiotic that permit CRM to maintain binding where other antibiotics fail.


Assuntos
Antibacterianos , Hidrocarbonetos Aromáticos com Pontes , Farmacorresistência Bacteriana Múltipla , Lincosamidas , Oxepinas , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Eritromicina/química , Eritromicina/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/síntese química , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Oxepinas/síntese química , Oxepinas/química , Oxepinas/farmacologia , Lincosamidas/síntese química , Lincosamidas/química , Lincosamidas/farmacologia , Animais , Camundongos , Desenho de Fármacos , Ribossomos/química
2.
Math Biosci Eng ; 21(1): 884-902, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303447

RESUMO

BACKGROUND: The current ribosome has evolved from the primitive stages of life on Earth. Its function is to build proteins and on the basis of this role, we are looking for a universal common ancestor to the ribosome which could: i) present optimal combinatorial properties, and ii) have left vestiges in the current molecules composing the ribosome (rRNA or r-proteins) or helping in its construction and functioning. METHODS: Genomic public databases are used for finding the nucleotide sequences of rRNAs and mRNA of r-proteins and statistical calculations are performed on the occurrence in these genes of some pentamers belonging to the RNA proposed as optimal ribosome ancestor. RESULTS: After having exhibited a possible solution to the problem of an RNA capable of catalyzing peptide genesis, traces of this RNA are found in many rRNAs and mRNA of r-proteins, as well as in factors contributing to the construction of the current ribosome. CONCLUSIONS: The existence of an optimal primordial RNA whose function is to facilitate the creation of peptide bonds between amino acids may have contributed to accelerate the emergence of the first vital processes. Its traces should be found in many living species inside structures structurally and functionally close to the ribosome, which is already the case in the species studied in this article.


Assuntos
Evolução Molecular , Ribossomos , Ribossomos/química , RNA Ribossômico/genética , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peptídeos
3.
Nature ; 626(8001): 1133-1140, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326618

RESUMO

Protein synthesis is a major energy-consuming process of the cell that requires the controlled production1-3 and turnover4,5 of ribosomes. Although the past few years have seen major advances in our understanding of ribosome biogenesis, structural insight into the degradation of ribosomes has been lacking. Here we present native structures of two distinct small ribosomal 30S subunit degradation intermediates associated with the 3' to 5' exonuclease ribonuclease R (RNase R). The structures reveal that RNase R binds at first to the 30S platform to facilitate the degradation of the functionally important anti-Shine-Dalgarno sequence and the decoding-site helix 44. RNase R then encounters a roadblock when it reaches the neck region of the 30S subunit, and this is overcome by a major structural rearrangement of the 30S head, involving the loss of ribosomal proteins. RNase R parallels this movement and relocates to the decoding site by using its N-terminal helix-turn-helix domain as an anchor. In vitro degradation assays suggest that head rearrangement poses a major kinetic barrier for RNase R, but also indicate that the enzyme alone is sufficient for complete degradation of 30S subunits. Collectively, our results provide a mechanistic basis for the degradation of 30S mediated by RNase R, and reveal that RNase R targets orphaned 30S subunits using a dynamic mechanism involving an anchored switching of binding sites.


Assuntos
Exorribonucleases , Proteínas Ribossômicas , Ribossomos , Exorribonucleases/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Cinética , Sítios de Ligação
4.
Nature ; 626(8001): 1125-1132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355796

RESUMO

To conserve energy during starvation and stress, many organisms use hibernation factor proteins to inhibit protein synthesis and protect their ribosomes from damage1,2. In bacteria, two families of hibernation factors have been described, but the low conservation of these proteins and the huge diversity of species, habitats and environmental stressors have confounded their discovery3-6. Here, by combining cryogenic electron microscopy, genetics and biochemistry, we identify Balon, a new hibernation factor in the cold-adapted bacterium Psychrobacter urativorans. We show that Balon is a distant homologue of the archaeo-eukaryotic translation factor aeRF1 and is found in 20% of representative bacteria. During cold shock or stationary phase, Balon occupies the ribosomal A site in both vacant and actively translating ribosomes in complex with EF-Tu, highlighting an unexpected role for EF-Tu in the cellular stress response. Unlike typical A-site substrates, Balon binds to ribosomes in an mRNA-independent manner, initiating a new mode of ribosome hibernation that can commence while ribosomes are still engaged in protein synthesis. Our work suggests that Balon-EF-Tu-regulated ribosome hibernation is a ubiquitous bacterial stress-response mechanism, and we demonstrate that putative Balon homologues in Mycobacteria bind to ribosomes in a similar fashion. This finding calls for a revision of the current model of ribosome hibernation inferred from common model organisms and holds numerous implications for how we understand and study ribosome hibernation.


Assuntos
Proteínas de Bactérias , Resposta ao Choque Frio , Fatores de Terminação de Peptídeos , Biossíntese de Proteínas , Psychrobacter , Proteínas Ribossômicas , Ribossomos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Fator Tu de Elongação de Peptídeos/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/química , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Psychrobacter/química , Psychrobacter/genética , Psychrobacter/metabolismo , Psychrobacter/ultraestrutura , Microscopia Crioeletrônica , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/ultraestrutura
5.
Structure ; 32(4): 400-410.e4, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38242118

RESUMO

Giardia lamblia is a deeply branching protist and a human pathogen. Its unusual biology presents the opportunity to explore conserved and fundamental molecular mechanisms. We determined the structure of the G. lamblia 80S ribosome bound to tRNA, mRNA, and the antibiotic emetine by cryo-electron microscopy, to an overall resolution of 2.49 Å. The structure reveals rapidly evolving protein and nucleotide regions, differences in the peptide exit tunnel, and likely altered ribosome quality control pathways. Examination of translation initiation factor binding sites suggests these interactions are conserved despite a divergent initiation mechanism. Highlighting the potential of G. lamblia to resolve conserved biological principles; our structure reveals the interactions of the translation inhibitor emetine with the ribosome and mRNA, thus providing insight into the mechanism of action for this widely used antibiotic. Our work defines key questions in G. lamblia and motivates future experiments to explore the diversity of eukaryotic gene regulation.


Assuntos
Giardia lamblia , Humanos , Giardia lamblia/genética , Giardia lamblia/química , Giardia lamblia/metabolismo , Emetina/farmacologia , Emetina/análise , Emetina/metabolismo , Microscopia Crioeletrônica , Ribossomos/química , RNA Mensageiro/metabolismo , Antibacterianos
6.
Biophys Chem ; 305: 107144, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38061282

RESUMO

Nucleobase-specific noncovalent interactions play a crucial role in translation. Herein, we provide a comprehensive analysis of the stacks between different RNA components in the crystal structures of the bacterial ribosome caught at different translation stages. Analysis of tRNA||rRNA stacks reveals distinct behaviour; both the A-and E-site tRNAs exhibit unique stacking patterns with 23S rRNA bases, while P-site tRNAs stack with 16S rRNA bases. Furthermore, E-site stacks exhibit diverse face orientations and ring topologies-rare for inter-chain RNA interactions-with higher average interaction energies than A or P-site stacks. This suggests that stacking may be essential for stabilizing tRNA progression through the E-site. Additionally, mRNA||rRNA stacks reveal other geometries, which depend on the tRNA binding site, whereas 16S rRNA||23S rRNA stacks highlight the importance of specific bases in maintaining the integrity of the translational complex by linking the two rRNAs. Furthermore, tRNA||mRNA stacks exhibit distinct geometries and energetics at the E-site, indicating their significance during tRNA translocation and elimination. Overall, both A and E-sites display a more diverse distribution of inter-RNA stacks compared to the P-site. Stacking interactions in the active ribosome are not simply accidental byproducts of biochemistry but are likely invoked to compensate and support the integrity and dynamics of translation.


Assuntos
RNA Ribossômico 23S , Ribossomos , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Ribossomos/química , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Conformação de Ácido Nucleico
7.
Nature ; 625(7994): 393-400, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030725

RESUMO

One of the most critical steps of protein synthesis is coupled translocation of messenger RNA (mRNA) and transfer RNAs (tRNAs) required to advance the mRNA reading frame by one codon. In eukaryotes, translocation is accelerated and its fidelity is maintained by elongation factor 2 (eEF2)1,2. At present, only a few snapshots of eukaryotic ribosome translocation have been reported3-5. Here we report ten high-resolution cryogenic-electron microscopy (cryo-EM) structures of the elongating eukaryotic ribosome bound to the full translocation module consisting of mRNA, peptidyl-tRNA and deacylated tRNA, seven of which also contained ribosome-bound, naturally modified eEF2. This study recapitulates mRNA-tRNA2-growing peptide module progression through the ribosome, from the earliest states of eEF2 translocase accommodation until the very late stages of the process, and shows an intricate network of interactions preventing the slippage of the translational reading frame. We demonstrate how the accuracy of eukaryotic translocation relies on eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs. Our findings shed light on the mechanism of translation arrest by the anti-fungal eEF2-binding inhibitor, sordarin. We also propose that the sterically constrained environment imposed by diphthamide, a conserved eukaryotic posttranslational modification in eEF2, not only stabilizes correct Watson-Crick codon-anticodon interactions but may also uncover erroneous peptidyl-tRNA, and therefore contribute to higher accuracy of protein synthesis in eukaryotes.


Assuntos
Células Eucarióticas , Biossíntese de Proteínas , RNA Mensageiro , Fases de Leitura , Ribossomos , Anticódon/genética , Anticódon/metabolismo , Códon/genética , Códon/metabolismo , Microscopia Crioeletrônica , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Fator 2 de Elongação de Peptídeos/antagonistas & inibidores , Fator 2 de Elongação de Peptídeos/metabolismo , Fases de Leitura/genética , Ribossomos/química , Ribossomos/metabolismo , Ribossomos/ultraestrutura , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo
8.
Elife ; 122023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010355

RESUMO

Previously we showed that 2D template matching (2DTM) can be used to localize macromolecular complexes in images recorded by cryogenic electron microscopy (cryo-EM) with high precision, even in the presence of noise and cellular background (Lucas et al., 2021; Lucas et al., 2022). Here, we show that once localized, these particles may be averaged together to generate high-resolution 3D reconstructions. However, regions included in the template may suffer from template bias, leading to inflated resolution estimates and making the interpretation of high-resolution features unreliable. We evaluate conditions that minimize template bias while retaining the benefits of high-precision localization, and we show that molecular features not present in the template can be reconstructed at high resolution from targets found by 2DTM, extending prior work at low-resolution. Moreover, we present a quantitative metric for template bias to aid the interpretation of 3D reconstructions calculated with particles localized using high-resolution templates and fine angular sampling.


Assuntos
Processamento de Imagem Assistida por Computador , Ribossomos , Microscopia Crioeletrônica/métodos , Ribossomos/química , Substâncias Macromoleculares/química , Processamento de Imagem Assistida por Computador/métodos
10.
J Struct Biol ; 215(4): 108015, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659578

RESUMO

Recent advances in cryo electron microscopy (cryo-EM) and image processing provide new opportunities to analyse drug targets at high resolution. However, structural heterogeneity limits resolution in many practical cases, hence restricting the level at which structural details can be analysed and drug design be performed. As structural disorder is not spread throughout the entire structure of a given macromolecular complex but instead is found in certain regions that move with respect to others and covering molecular scales from domain conformational changes up to the level of side chain conformations in ligand binding pockets, it is possible to focus the attention on those regions and the associated relative movements. Here we show how the usage of focused classifications and refinements provide insights into global conformational arrangements, exemplified on the human ribosome and on the cannabinoid G protein coupled receptor (GPCR), and how they can improve the local map resolution from an essentially disordered region to the 3-4 Å and finally to the 2 Å resolution range. A systematic analysis with variable spherical masks during focused refinement is presented showing that the choice of an optimal mask size helps refining to high resolution. This study covers several practical approaches on 4 examples illustrating how important mask size & shape and including neighbouring structural elements are for a focused analysis of a macromolecular complex. Such methods will be crucial for cryo-EM structure-based drug design of various medical targets and are applicable to single particle cryo-EM and electron tomography data.


Assuntos
Processamento de Imagem Assistida por Computador , Ribossomos , Humanos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Ribossomos/química , Conformação Molecular , Desenho de Fármacos
11.
Cell Res ; 33(11): 867-878, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37491604

RESUMO

Eukaryotic ribosome assembly is a highly orchestrated process that involves over two hundred protein factors. After early assembly events on nascent rRNA in the nucleolus, pre-60S particles undergo continuous maturation steps in the nucleoplasm, and prepare for nuclear export. Here, we report eleven cryo-EM structures of the nuclear pre-60S particles isolated from human cells through epitope-tagged GNL2, at resolutions of 2.8-4.3 Å. These high-resolution snapshots provide fine details for several major structural remodeling events at a virtual temporal resolution. Two new human nuclear factors, L10K and C11orf98, were also identified. Comparative structural analyses reveal that many assembly factors act as successive place holders to control the timing of factor association/dissociation events. They display multi-phasic binding properties for different domains and generate complex binding inter-dependencies as a means to guide the rRNA maturation process towards its mature conformation. Overall, our data reveal that nuclear assembly of human pre-60S particles is generally hierarchical with short branch pathways, and a few factors display specific roles as rRNA chaperones by confining rRNA helices locally to facilitate their folding, such as the C-terminal domain of SDAD1.


Assuntos
Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Ribossomos/química , Núcleo Celular/metabolismo , RNA Ribossômico/química , Proteínas Ribossômicas/metabolismo
12.
RNA ; 29(10): 1500-1508, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419664

RESUMO

The ribosome is a large ribonucleoprotein assembly that uses diverse and complex molecular interactions to maintain proper folding. In vivo assembled ribosomes have been isolated using MS2 tags installed in either the 16S or 23S ribosomal RNAs (rRNAs), to enable studies of ribosome structure and function in vitro. RNA tags in the Escherichia coli 50S subunit have commonly been inserted into an extended helix H98 in 23S rRNA, as this addition does not affect cellular growth or in vitro ribosome activity. Here, we find that E. coli 50S subunits with MS2 tags inserted in H98 are destabilized compared to wild-type (WT) 50S subunits. We identify the loss of RNA-RNA tertiary contacts that bridge helices H1, H94, and H98 as the cause of destabilization. Using cryogenic electron microscopy (cryo-EM), we show that this interaction is disrupted by the addition of the MS2 tag and can be restored through the insertion of a single adenosine in the extended H98 helix. This work establishes ways to improve MS2 tags in the 50S subunit that maintain ribosome stability and investigates a complex RNA tertiary structure that may be important for stability in various bacterial ribosomes.


Assuntos
Escherichia coli , RNA Ribossômico , RNA Ribossômico/genética , RNA Ribossômico/análise , Escherichia coli/genética , Ribossomos/genética , Ribossomos/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/química , Subunidades Ribossômicas Maiores , RNA Bacteriano/genética , RNA Bacteriano/química , Proteínas Ribossômicas
13.
Science ; 381(6653): 70-75, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410833

RESUMO

Ribosomes catalyze protein synthesis by cycling through various functional states. These states have been extensively characterized in vitro, but their distribution in actively translating human cells remains elusive. We used a cryo-electron tomography-based approach and resolved ribosome structures inside human cells with high resolution. These structures revealed the distribution of functional states of the elongation cycle, a Z transfer RNA binding site, and the dynamics of ribosome expansion segments. Ribosome structures from cells treated with Homoharringtonine, a drug used against chronic myeloid leukemia, revealed how translation dynamics were altered in situ and resolve the small molecules within the active site of the ribosome. Thus, structural dynamics and drug effects can be assessed at high resolution within human cells.


Assuntos
Antineoplásicos , Neoplasias , Biossíntese de Proteínas , Humanos , Antineoplásicos/farmacologia , Sítios de Ligação , Microscopia Crioeletrônica , Neoplasias/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/química , Ribossomos/metabolismo , RNA de Transferência/metabolismo
14.
Adv Biochem Eng Biotechnol ; 185: 59-90, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37306697

RESUMO

Cell-free protein synthesis (CFPS) with flexibility and controllability can provide a powerful platform for high-throughput screening of biomolecules, especially in the evolution of peptides or proteins. In this chapter, the emerging strategies for enhancing the protein expression level using different source strains, energy systems, and template designs in constructing CFPS systems are summarized and discussed in detail. In addition, we provide an overview of the ribosome display, mRNA display, cDNA display, and CIS display in vitro display technologies, which can couple genotype and phenotype by forming fusion complexes. Moreover, we point out the trend that improving the protein yields of CFPS itself can offer more favorable conditions for maintaining library diversity and display efficiency. It is hoped that the novel CFPS system can accelerate the development of protein evolution in biotechnological and medical applications.


Assuntos
Proteínas , Ribossomos , Proteínas/análise , Biblioteca Gênica , Ribossomos/genética , Ribossomos/química , Ribossomos/metabolismo , Biossíntese de Proteínas/genética , DNA Complementar/análise , DNA Complementar/química , DNA Complementar/metabolismo , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo
15.
J Mol Biol ; 435(15): 168185, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348753

RESUMO

Mediated by elongation factor G (EF-G), ribosome translocation along mRNA is accompanied by rotational movement between ribosomal subunits. Here, we reassess whether the intersubunit rotation requires GTP hydrolysis by EF-G or can occur spontaneously. To that end, we employ two independent FRET assays, which are based on labeling either ribosomal proteins (bS6 and bL9) or rRNAs (h44 of 16S and H101 of 23S rRNA). Both FRET pairs reveal three FRET states, corresponding to the non-rotated, rotated and semi-rotated conformations of the ribosome. Both FRET assays show that in the absence of EF-G, pre-translocation ribosomes containing deacylated P-site tRNA undergo spontaneous intersubunit rotations between non-rotated and rotated conformations. While the two FRET pairs exhibit largely similar behavior, they substantially differ in the fraction of ribosomes showing spontaneous fluctuations. Nevertheless, instead of being an invariable intrinsic property of each FRET pair, the fraction of spontaneously fluctuating molecules changes in both FRET assays depending on experimental conditions. Our results underscore importance of using multiple FRET pairs in studies of ribosome dynamics and highlight the role of thermally-driven large-scale ribosome rearrangements in translation.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Fator G para Elongação de Peptídeos , Ribossomos , Guanosina Trifosfato/metabolismo , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Ribossomos/química , Ribossomos/metabolismo , RNA Ribossômico 23S/metabolismo , RNA de Transferência/metabolismo
16.
Nat Chem ; 15(7): 913-921, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37308707

RESUMO

As genetic code expansion advances beyond L-α-amino acids to backbone modifications and new polymerization chemistries, delineating what substrates the ribosome can accommodate remains a challenge. The Escherichia coli ribosome tolerates non-L-α-amino acids in vitro, but few structural insights that explain how are available, and the boundary conditions for efficient bond formation are so far unknown. Here we determine a high-resolution cryogenic electron microscopy structure of the E. coli ribosome containing α-amino acid monomers and use metadynamics simulations to define energy surface minima and understand incorporation efficiencies. Reactive monomers across diverse structural classes favour a conformational space where the aminoacyl-tRNA nucleophile is <4 Å from the peptidyl-tRNA carbonyl with a Bürgi-Dunitz angle of 76-115°. Monomers with free energy minima that fall outside this conformational space do not react efficiently. This insight should accelerate the in vivo and in vitro ribosomal synthesis of sequence-defined, non-peptide heterooligomers.


Assuntos
Escherichia coli , Ribossomos , Escherichia coli/genética , Seleção de Pacientes , Ribossomos/química , Aminoácidos/química , Biossíntese de Proteínas
17.
Nat Plants ; 9(6): 987-1000, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37156858

RESUMO

In plant cells, translation occurs in three compartments: the cytosol, the plastids and the mitochondria. While the structures of the (prokaryotic-type) ribosomes in plastids and mitochondria are well characterized, high-resolution structures of the eukaryotic 80S ribosomes in the cytosol have been lacking. Here the structure of translating tobacco (Nicotiana tabacum) 80S ribosomes was solved by cryo-electron microscopy with a global resolution of 2.2 Å. The ribosome structure includes two tRNAs, decoded mRNA and the nascent peptide chain, thus providing insights into the molecular underpinnings of the cytosolic translation process in plants. The map displays conserved and plant-specific rRNA modifications and the positions of numerous ionic cofactors, and it uncovers the role of monovalent ions in the decoding centre. The model of the plant 80S ribosome enables broad phylogenetic comparisons that reveal commonalities and differences in the ribosomes of plants and those of other eukaryotes, thus putting our knowledge about eukaryotic translation on a firmer footing.


Assuntos
RNA Ribossômico , Ribossomos , Citosol , RNA Ribossômico/química , Microscopia Crioeletrônica , Filogenia , Modelos Moleculares , Ribossomos/química , Plantas/genética , /genética
18.
RNA ; 29(7): 1069-1076, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37068913

RESUMO

Wobble GU pairs (or G•U) occur frequently within double-stranded RNA helices interspersed between standard G=C and A-U Watson-Crick pairs. Another type of G•U pair interacting via their Watson-Crick edges has been observed in the A site of ribosome structures between a modified U34 in the tRNA anticodon triplet and G + 3 in the mRNA. In such pairs, the electronic structure of the U is changed with a negative charge on N3(U), resulting in two H-bonds between N1(G)…O4(U) and N2(G)…N3(U). Here, we report that such pairs occur in other highly conserved positions in ribosomal RNAs of bacteria in the absence of U modification. An anionic cis Watson-Crick G•G pair is also observed and well conserved in the small subunit. These pairs are observed in tightly folded regions.


Assuntos
RNA Ribossômico , Ribossomos , Códon , Conformação de Ácido Nucleico , Ribossomos/genética , Ribossomos/química , RNA Ribossômico/genética , RNA Ribossômico/análise , Anticódon , Bactérias/genética
19.
J Biol Chem ; 299(4): 104608, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36924943

RESUMO

Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein-coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and, from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.


Assuntos
Anticódon , Códon , RNA Ribossômico , Ribossomos , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Códon/química , Códon/genética , Códon/metabolismo , Conformação de Ácido Nucleico , Nucleotídeos/química , Nucleotídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/química , Ribossomos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Pareamento Incorreto de Bases , Modelos Moleculares , RNA Ribossômico/química , RNA Ribossômico/metabolismo
20.
J Chem Phys ; 158(1): 015102, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610950

RESUMO

The ribosomal exit tunnel is the primary structure affecting the release of nascent proteins at the ribosome. The ribosomal exit tunnels from different species have elements of conservation and differentiation in structural and physico-chemical properties. In this study, by simulating the elongation and escape processes of nascent proteins at the ribosomal exit tunnels of four different organisms, we show that the escape process has conserved mechanisms across the domains of life. Specifically, it is found that the escape process of proteins follows the diffusion mechanism given by a simple diffusion model, and the median escape time positively correlates with the number of hydrophobic residues and the net charge of a protein for all the exit tunnels considered. These properties hold for 12 distinct proteins considered in two slightly different and improved Go-like models. It is also found that the differences in physico-chemical properties of the tunnels lead to quantitative differences in the protein escape times. In particular, the relatively strong hydrophobicity of E. coli's tunnel and the unusually high number of negatively charged amino acids on the tunnel's surface of H. marismortui lead to substantially slower escapes of proteins at these tunnels than at those of S. cerevisiae and H. sapiens.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Escherichia coli/metabolismo , Ribossomos/química , Proteínas/química , Aminoácidos/química , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...